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A possible resolution of the incompatibility of quantum mechanics and general relativity is that
the relativity principle is emergent. I show that the central paradox of black holes also occurs at
a liquid-vapor critical surface of a bose condensate but is resolved there by the phenomenon of
quantum criticality. I propose that real black holes are actually phase boundaries of the vacuum
analogous to this, and that the Einstein field equations simply fail at the event horizon the way
quantum hydrodynamics fails at a critical surface. This can occur without violating classical general
relativity anywhere experimentally accessible to external observers. Since the low-energy effects that
occur at critical points are universal, it is possible to make concrete experimental predictions about
such surfaces without knowing much, if anything about the true underlying equations. Many of
these predictions are different from accepted views about black holes - in particular the absence of
Hawking radiation and the possible transparency of cosmological black hole surfaces. [To appear in
the C. N Yang Festschrift (World Sci., Singapore, 2003).]

PACS numbers: 04.70.Dy, 05.70.Jk, 05.30.Jp, 64.60.Ht

I. INTRODUCTION

It is a great honor for me to be speaking at this sympo-
sium for Prof. C. N. Yang. Like many other physicists,
I have always envied Prof. Yang’s many excellent contri-
butions to science over the years, and have even shared
the common experience of aspiring to match them and
managing to fall short. Dealing with this is not a happy
thing. I confess having become depressed over it for a
time and cheering up only after realizing that everyone
else had the same problem. I now no longer worry about
it. One should no more agonize over this inadequacy than
over being too short or bald. I recommend this course of
action for the rest of you sufferers, incidentally, in case
you have not figured it out already for yourselves. I also
recommend that we keep trying, for Prof. Yang continues
to be the man to beat.

My views on the great unsolved questions at the core of
modern physics—quantum measurement, the emergence
of the correspondence limit through decoherence, spon-
taneous ordering, hierarchies of laws—are strongly in-
fluenced by my life in condensed matter physics, where
theoretical ideas are forced to immediate and brutal con-
frontation with experiment by virtue of the latter’s low
cost. Anyone subjected to this long enough eventually
develops the habit of thinking experimentally, of choos-
ing experimental issues primarily on the basis of what
one could measure in a given situation, and evaluating
theories mainly on the basis of the experiments they cor-
rectly predict. This is considered overly conservative in
many circles, but I disagree. I believe that physics is an
experimental science, and that theory acquires author-
ity by confronting and conforming to experiment, not
the other way around. Dealing with a rich experimental
record day after day has the additional benefit of giving
one a healthy respect for the natural world’s ability to
surprise and a healthy disrespect for the belief that all
things can be calculated from first principles.

? ?
FIG. 1: Einstein gravity is similar to a heavy ball placed on
a rubber membrane, except that the membrane ruptures if
the ball is too heavy. Rupturing can be prevented by declar-
ing the laws of elasticity to be true no matter how extreme
the stretching, but this is unphysical. The solution to the
black hole problem may be that the relativity principle, like
elasticity, is emergent and simply fails at the event horizon.

II. THE RELATIVITY PRINCIPLE

I wish today to discuss the black hole horizon paradox
and the incompatibility of relativity and quantum me-
chanics. This is obviously a great problem in the physics
pantheon and something of great interest to all of us,
particularly in light of recent advances in string theory.
However, what I have to say is not so friendly to micro-
scopic approaches of this kind. I have become increas-
ingly concerned that the essence of the problem may not
be microscopic at all but collective, and that studying mi-
croscopic models of the vacuum may be the wrong thing
to do even if the models are right. I think black hole
formation may be a quantum phase transition1,2.

Before explaining how such a thing could be consistent
with Einstein gravity and working out the experimen-
tal consequences, let me explain the basic idea, which
is straightforward. Let us imagine a stretched rubber
sheet with a heavy ball rolling on it, as shown in Fig.
1. This is the stripped-down model of gravity familiar
from science museum exhibits. The membrane repre-
sents space-time, the ball represents some gravitating ob-
ject, the distortion represents the gravitational field, and
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the motions of small objects on the membrane represent
geodesic trajectories of satellites. If the ball is not too
heavy then the membrane distorts elastically to make a
slight depression in response to its weight. Small objects
in the vicinity then fall into this distortion and orbit,
membrane vibrations beamed at the ball scatter, and so
forth in analogy with general relativity. If the ball is too
heavy, on the other hand, the membrane ruptures and
the ball falls through. When this happens the analogy
with Einstein gravity fails completely, since the relativity
principle requires every point in space-time to be locally
indistinguishable from any other, and thus expressly for-
bids rupture. The formal statement of this problem is
that the black hole event horizon, the obvious candidate
for catastrophic failure in general relativity, exhibits no
singular behavior in any quantity measured in local coor-
dinates. However, catastrophic failure is precisely what
I suspect is happening at real black hole surfaces.

What would facilitate this breakdown and at the same
time reconcile it with what we know experimentally
about relativity are the limit paradoxes of continuous
quantum phase transitions3,4. Known physical principles
operating at such transitions would enable relativity to
fail quantum mechanically, just as laws of elasticity fail
in the membrane, but so gently that classical Einstein
gravity would not be violated in any region of space-time
experimentally accessible to us1. This latter point is not
obvious, especially if one has not thought carefully about
phases and phase transitions, so one of my main tasks
here today is to explain it convincingly.

The possibility of relativity failure is difficult for most
of us to think about, but should not be. When asked
whether relatively applies at the Planck scale, for exam-
ple, most physicists will attempt to change the subject
and, in the end, avoid committing one way or the other
even though traditional relativity forbids preferred scales.
Everybody understands that relativity is believable be-
cause it is measured to be true, not because it ought to
be true, and that extrapolating many orders of magni-
tude beyond present measurement capability is no less
dangerous in relativity than it is in anything else.

III. CRITICAL OPALESCENCE

Let me now begin by reminding you about the simplest
known example of a phase transition, ordinary vaporiza-
tion. In 1910 Johannes van der Waals won the Nobel
Prize in physics for his work on non-ideal gasses, and
particularly for his invention of the relation

(p+
a

v2
)(v − b) = kBT , (1)

known today as the van der Waals equation of state5.
This approximate description of the non-deal gas cap-
tures the essential features of both departures from ide-
ality in real vapors and the liquid-vapor transition they
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FIG. 2: Pressure versus volume per atom given by Eq. (1) for
various temperatures. The critical volume, pressure and tem-
perature are vc = 3b, pc = a/27b2, and kBTc = 8a/27b. The
increment between successive isotherms is ∆T = 0.05Tc. The
dotted lines show the equation of state before the Maxwell
construction. For freon (CCl2F2) the critical temperature is
385 ◦K and the critical pressure 4.12 MPa (37 atmospheres).

anticipate. p is the pressure, v is the volume per molecule,
T is the temperature, kB is Boltzmann’s constant, and
a and b are parameters characterizing the non-ideality of
the fluid. a represents the effects of attractive bonding
forces between the molecules, and b represents the volume
excluded due to short-range molecular repulsions. Both
parameters are empirically adjusted to fit the properties
of a specific substance. Setting them to zero produces
the ideal gas law.

The van der Waals equation of state describes the
phase transition only implicitly. It may be seen in Fig.
2 that its isotherms exhibit unphysical inflections at low
temperatures that result in the bulk modulus

k = −v ∂p
∂v

(2)

becoming negative. This is a symptom of the theory’s
failure to correctly describe liquid-vapor coexistence.
From the vast amount of work done on this problem in
the 1970s, culminating in the invention of the Wilson
renormalization group6, we understand that equations of
state near phase transitions are inherently nonanalytic,
and that analytic fits to them generally produce non-
sense when extrapolated across phase boundaries. These
non-analyticities are, however, effects of large size and
disappear when the sample is small. Taken literally, the
Van der Waals equation of state is a description of a small
sample. To apply it to a large sample we must take into
account for the system’s tendency to separate into regions
of high and low density. This is accomplished by finding
a pressure at which the area under a straight line drawn
between the two extremal volumes is the same as that
under the inflecting equation of state. The end points



3

of this Maxwell construction then define the liquid and
vapor densities5.

The critical point - the top of the liquid-vapor dome
where the two-phase region shrinks to zero - is especially
important for our discussion of black holes. At this point,
and this point only, the bulk modulus of the fluid is iden-
tically zero. For temperatures above the critical temper-
ature Tc, inflection does not occur, the liquid and va-
por phases are physically indistinguishable, and the bulk
modulus is positive. For temperature less than Tc, phase
separation occurs, and the bulk modulus at either end of
the Maxwell construction is again positive. Thus at this
point, and this point only, the speed of sound

c =
√

k/ρ , (3)

where M and ρ = M/v are the mass and mass density of
the molecules, vanishes.

In conventional fluids, the vanishing of the sound speed
at the critical point causes critical opalescence, a strange
phenomenon in which the fluid becomes cloudy and
opaque to the transmission of light, like an opal. This
is very dramatic to see. My colleague Doug Osheroff
here at Stanford has a freshman physics demonstration of
critical opalescence that uses freon as the working fluid.
The critical pressure and temperature of freon are suf-
ficiently low that one can do this without endangering
students in the front row. Doug sets the temperature to
the critical value and then slowly ramps up the pressure,
while Richard Strauss’s Also Sprach Zarathustra plays in
the background. If he times it right, the laser shining
through the freon winks out at the exact moment the or-
chestra plays “Ta Daa,” and gets him a standing ovation.

Critical opalescence signals a fundamental failure of
hydrodynamics4. Equipartition among the degrees of
freedom of compressional sound, which exist by virtue of
the principles of hydrodynamics, requires the departure
of the particle density from its average value to obey

<δρ(r)δρ(r′)>=
kBT ρ2

(2π)3k

∫

|q|<1/ξ

eiq·(r−r
′) dq , (4)

where r and r
′ denote different positions in the fluid, 1/ξ

is an ultraviolet cutoff (i.e. a scale at which hydrody-
namics fails), and <> denotes thermal average. This is
the quantity measured in a light scattering experiment.
It becomes enormous at the critical point because k goes
to zero. However, since the density correlator cannot ac-
tually become infinite, we know that the key premise of
the calculation, the validity of hydrodynamics, must fail.
This occurs in practice through the divergence of ξ at the
critical point.

The laws of hydrodynamics are emergent. They are
universal, exact mathematical relationships among mea-
sured quantities that develop at long length scales in liq-
uids and gases. This development cannot be deduced
from the underlying equations of motion of the atoms.

10�510�410�310�2
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FIG. 3: Specific heat of Al2O3 in units of calories/gm ◦K ver-
sus temperature as measured7 (dots) and as given by Eq. (5)
with c = 6142 m/sec. The mass density, bulk modulus and
poisson ratio of this material are ρ = 3.89 gm/cm3, k = 228
GPa, and σ = 0.22, respectively. The transverse and longitu-
dinal sound speeds computed from these are then ct = 6355
m/sec and cℓ = 10602 m/sec. Their appropriately weighted
average is 2c−3 = 2c−3

t
+ c−3

ℓ
.

It is a physical phenomenon - one we know to be ex-
actly true because it is measured to be true. Emergent
laws are equivalent to, and indistinguishable from, fun-
damental laws in all ways but one: they are vulnerable
to failure by simply not emerging. This is what happens
at the critical point.

IV. QUANTUM PHASES

Phases and phase transitions are not inherently finite-
temperature phenomena. They occur at zero tempera-
ture as well, and are regulated by principles of emergence
in the same way as their finite-temperature relatives. The
important difference is that zero-temperature phases are
purely quantum-mechanical phenomena.

A quantum phase familiar from everyday experience is
the crystalline solid. If this is an insulator its low-energy
quantum excitations consist of center-of-mass motion and
sound solely. Both are quantum-mechanical. The sound
waves of the cold solid are quantized “particles” with apt
physical similarities with particles of light. This analogy
becomes increasingly exact as the energy scale is low-
ered and, in the end, results in the low-temperature spe-
cific heat of all crystalline insulators becoming the Planck
blackbody law

C

L3
=

4π2

15
(
kBT

h̄c
)3 kB (5)

with the speed of light rescaled down to the speed of
sound. This is shown for the specific case of Al2O3 in
Fig. 3.

The liquid and gas phases also exist at zero temper-
ature. The liquid is realized by either 4He nor 3He—
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both of which become superfluids when cooled to zero
temperature (although 3He is more complicated)8. The
compressional sound waves in these fluids are quantum-
mechanical particles that become more and more accu-
rately defined and relativistic as the energy scale is low-
ered. Their vapor pressures become unmeasurably small
at low temperatures—meaning that both will puddle at
the bottom of a container and will not expand to fill the
available volume. The vapor is realized by atomic bose-
einstein condensates, the discovery of which by Cornell,
Ketterle, and Weiman was awarded the Nobel Prize in
physics in 20019,10. Atomic condensates are metastable
states of matter and thus not, strictly speaking, quantum
phases. However, this is unimportant. They are ground
states of an equivalent fictitious hamiltonian and have
all the important physical properties of phases. Like 4He
and 3He they exist as superfluids at ultralow tempera-
tures and have nonzero bulk moduli12. Unlike helium,
however, they do expand to fill any available volume.

The existence of the quantum liquid and gas in na-
ture means that we can think about the phase transition
between them, even though it has never been observed
in the laboratory. The ideal behavior would be a phase
diagram something like Fig. 2 except with the “tem-
perature” reinterpreted as parameter in the underlying
equations of motion.

Unfortunately, not every parameterization of this tran-
sition produces a phase diagram like that of Fig. 2. Real
4He is described by the equations

ih̄
∂Ψ

∂t
= H Ψ (6)

H = −
N

∑

j

h̄2

2M
∇2

j + V (r1, ..., rN ) (7)

V (r1, ..., rN ) =
∑

j<k

Vpair(rj − rk) , (8)

where Vpair is a pair potential, given reasonably accu-
rately by

Vpair(r) = V0

[

(
r0
r

)12 − 2(
r0
r

)6
]

, (9)

with r0 = 3 Å and V0 = 11 ◦K13. We know this to
be true because the pair potential has been accurately
measured in atomic beam experiments (cf. Fig. 4).
Also, variational calculations using this potential predict
the correct ground state energy14, pair correlation func-
tion, crystallization pressure and superfluid transition
temperature15. Since the cohesion of the liquid comes
from the coefficient of of 1/r6 in this potential, the most
obvious way to produce the gas phase is to reduce this

-0.500.5
0.75 1 1.25 1.5 1.75 2V=V0

r=r0
t t t t t t t t t t t t t t t t t t t t t t t

FIG. 4: Comparison of He-He pair potential measured by
atomic-beam scattering11 (dots) with the model of Eq. (9).

coefficient to zero. However extensive computer model-
ing in the 1970s showed that the transition so generated
is strongly first-order and cannot be tuned to criticality
with volume16.

V. SUPERFLUIDITY

To make a phase diagram like that of Fig. 2 we must
add multi-body interaction potentials17. The simplest
way to accomplish this is to sum short-range components
into a density functional. Let us consider specifically

V (r1, ..., rN ) = V1N + V2

N
∑

j<k

(
βr20
π

)3/2e−β|rj−rk|2 + ...

+ Vn

∑

j1<...<jn

n−3/2

[

nβr20
π

](3n−3)/2
∏

µ<ν

e−β|rjµ−rjν |2

(10)
where r0 is a characteristic length, in the limit β → ∞.
The multi-center functions in this expression are zero
unless n particles are coincident in space, and are nor-
malized to yield 1 when integrated on all but one of
their arguments. With this convention Eqs. (6) and (7)
may be re-expressed compactly as the classical lagrangian
density18,19

L = ψ∗(ih̄
∂

∂t
+ µ)ψ − h̄2

2M
|∇ψ|2 − U(|ψ(r|2) , (11)

where µ is the chemical potential and

U(|ψ|2) =
V1

1!
|ψ|2 +

V2

2!
r30 |ψ|4 +

V3

3!
r60 |ψ|6 + ... . (12)

Thus Vjr
3(j−1)
0 are simply the Taylor expansion coeffi-

cients of U .
The quantum equation of state implicit in models such

as Eq. (11) are easy to work out when the potentials are
weak20. The reason is that the fluid bose condenses, the
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operator ψ acquires a vacuum expectation value ψ →<
ψ>, and the entire problem becomes classical. As with
any superfluid order parameter, the square ψ has the
physical meaning of a particle density: |ψ|2 = 1/v. The
usual rules of canonical quantization then give us for the
expected energy

<H>=

∫
[

h̄2

2M
|∇ψ|2 + U(|ψ|2) − µ|ψ|2

]

dr . (13)

This allows us to identify U(|ψ|2) as the energy per unit
volume of the fluid as a function of its density, and

p = |ψ|2U ′(|ψ|2) − U(|ψ|2) (14)

as the pressure. The quantum ground state is implicitly
defined by the energy-minimization condition

µ = U ′(|ψ|2) . (15)

It is also easy to work out what U must be to give an
equation of state like that of Fig. 2. We need to modify
Eq. (1) somewhat because the pressure of a quantum
fluid is due to interactions and thus must fall off at least
as fast as 1/v2 if the potentials are to be short-ranged.
Thus we take

(p+
a

v4
)(v2 − b) = d , (16)

where a, b, and d are hamiltonian parameters. Since

∫

p dv =
d

2
√
b

ln(
v −

√
b

v +
√
b
) +

a

3v3
, (17)

we then have

U(|ψ|2) = d− d

2
√
b|ψ|2

ln(
1 −

√
b|ψ|2

1 +
√
b|ψ|2

) − a

3
|ψ|4

= −a
3
|ψ|4 + d

[

(
√
b|ψ|2)2
3

+
(
√
b|ψ|2)4
5

+ ...

]

. (18)

The analysis of this equation of state, including the
Maxwell construction, is exactly the same as with Eq.
(1). It becomes critical when d = 8a/27b.

The dispersion relation of compressional sound implicit
in such models has an important characteristic form. Be-
cause it is classical, the motion is defined by the extremal
condition δL/δψ∗ = 0, which is satisfied when

ih̄
∂ψ

∂t
= − h̄2

2M
∇2ψ +

[

U ′(|ψ|2) − µ

]

ψ . (19)

02
4
0 1 2 3!�=c

q�
�h! = �h2q2=2M +Mc2������ ! = cq6

FIG. 5: Dispersion relation given by Eq. (22). The dotted
lines are asymptotic behaviors at large and small q. As its mo-
mentum increases this excitation evolves adiabatically from a
relativistic sound quantum into a free boson.

Assuming that ψ = ψ0+δψR +iδψI , where ψ0 is real and
δψR and δψI are both small, we have, to linear order,

h̄
∂(δψR)

δt
= − h̄2

2M
∇2(δψI)

− h̄
∂(δψI)

δt
= − h̄2

2M
∇2(δψR) + 2U ′′(ψ2

0)ψ2
0 δψR . (20)

Then substituting δψR = δψ
(0)
R ei(q·r−ωt) and δψI =

δψ
(0)
I ei(q·r−ωt), and noting that

U ′′(ψ2
0) ψ2

0 = kv , (21)

we obtain for the dispersion relation

h̄ωq =

√

(h̄cq)2 + (
h̄2q2

2M
)2 ( c =

√

k

ρ
) . (22)

This is plotted in Fig. 5.

Eq. (22) contains a length scale

ξ = h̄/Mc . (23)

central to our discussion. The linear relation ω = cq ex-
pected of a compressional fluid occurs only when qξ <<
1. At scales longer than ξ, the principles of quantum hy-
drodynamics, the zero-temperature version of the famil-
iar laws of classical fluids, become exact, and we obtain
a gas of noninteracting relativistic scalar bosons charac-
terized by velocity c. At length scales shorter than ξ, on
the other hand, the principles of quantum hydrodynam-
ics fail, and these particles acquire a decay width and are
not guaranteed even to exist.
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VI. QUANTUM ENTANGLEMENT

Eq. (22) is extremely important for our argu-
ment, so let us derive it by a second method due to
Bogoliubov21,22. The reasoning in this case is more
straightforward but less general, in that it applies only
to the weakly-interacting bose gas.

The starting point of the calculation is again conven-
tional quantum mechanics as defined by Eqs. (6) and
(7), but we use only a pair sum, as in Eq. (8), with the
short-range repulsive potential

Vpair(r) = V2r
3
0 δ

3(r) . (24)

With this done Eq. (7) may be rewritten

H =
∑

q

h̄2q2

2M
a†
q
aq

+
V2r

3
0

2L3

∑

q

∑

q′

∑

∆q

a†
q+∆q

a†
q′−∆q

aq′aq , (25)

where a†
q

and aq are bose creation and annihilation op-
erators satisfying the usual commutation relations

[aq, aq′ ] = 0 [aq, a
†
q′ ] = δqq′ . (26)

We assume for simplicity that the bosons live in a box of
volume L3 with periodic boundary conditions and that
the pair potential is weak.

The calculation is again simplified by the phenomenon
of bose condensation. This causes the q = 0 state to
acquire macroscopic occupancy N . When this number
is thermodynamically large (but not otherwise) the q =
0 state becomes a particle reservoir for the rest of the
system. The most significant effect of the potential is
to then to scatter particles out of, and back into, the
condensate in pairs. The matrix element for this process

is always about NV2r
3
0/L

3, since <a†0a0>≃ N . Thus if
we ignore the depletion of N due to scattering of bosons
out of the condensate then we may simply replace a0 and

a†0 everywhere they appear in Eq. (25) with
√
N . This

gives

Heff =
∑

q 6=0

{

(
h̄2q2

2M
+
NV2r

3
0

L3
) a†

q
aq

+
NV2r

3
0

2L3
(a†

q
a†−q

+ a−qaq)

}

+
N2V2r

3
0

2L3
. (27)

Heff does not conserve particle number, but this is simply
an approximation. In reality any promotion of particles
out of the condensate will be matched by a corresponding
reduction of N .

This hamiltonian may be easily diagonialized by
canonical transformation. Let

bq = uqaq + vqa
†
−q

. (28)

Then the condition

[bq, bq′ ] = 0 [bq, b
†
q′ ] = δqq′ (29)

requires that u2
q − v2

q = 1, which is satisfied when

uq = cosh(θq) vq = sinh(θq) . (30)

The inverse of Eq. (29) is aq = uqbq − vqb
†
−q

. Substi-
tuting this into Eq. (27) we find that the coefficients of

b†
q
b†−q

and b−qbq vanish provided that

u2
q + v2

q

2vquq
=

1

tanh(2θq)
= 1 +

L3

NV2r30

h̄2q2

2M
. (31)

With this choice of uq and vq we obtain finally

Heff =
∑

q

{

h̄ωq b
†
q
bq +

h̄2q2

2M
v2

q − N̂V2r
3
0

L3
uqvq

}

+
N̂V2r

2
0

2L3
( N̂ = N +

∑

q

v2
q ) , (32)

where h̄ωq is given by Eq. (22) with

Mc2 =
NV2r

3
0

L3
. (33)

The ground state implicit in this solution is a highly
“entangled” state in which the number of bosons with
momentum q is correlated with the number at −q. From
the condition that every bq annihilate the ground state
|Ψ> we find that

|Ψ>= exp(−
∑

q

vq

2uq
a†
q
a†−q

)(a†0)
N |0> . (34)

The expressions for uq and vq may also be obtained by
adopting a ground state of this form as a variational
ansatz and minimizing the expected energy with respect
to vq/uq. They may also be obtained by minimizing the
ground state energy implicit in Eq. (32).



7

g? Liquid
Vapor

CriticalSurface? z
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FIG. 6: Thought experiment in which a tank in earth’s grav-
ity is filled with cold superfluid characterized by a critical
equation of state. The pressure increases toward the bottom
of the tank and eventually reaches, and surpasses, the critical
value. Sound quanta generated by a transducer are refracted
toward this “horizon” and stall there, just as light does near
a classical Schwarzschild event horizon. On the right are the
pressure profile given by Eq. (37) and the sound velocity
profile given by Eq. (38).

VII. CRITICAL EVENT HORIZON

Let us now turn to the black hole paradox. Rather than
trying to resolve the problem by promoting a specific the-
ory of gravity, which is probably not falsifiable anyway,
let us use our understanding of quantum fluids to estab-
lish a simple point: Zero-temperature phase transitions
generate the same kinds of apparent illogic one finds at
black hole surfaces. This result is very general and thus
also applies to candidate microscopic theories of gravity.

Imagine a thought experiment, illustrated in Fig. 6, in
which a tall tank on the surface of the earth is filled with
a zero-temperature quantum fluid described by a critical
equation of state - for example, Eq. (16) with d = 8a/27b.
The pressure increases toward the bottom of the tank
due to gravity and, at some critical depth, reaches, and
then surpasses, the critical pressure pc = a/27b2. If we
now stimulate the system near the critical surface with a
sound transducer, the injected quanta will be attracted
by the surface because the propagation speed is lower
there. This is the exactly same effect as refraction of light
toward the center of a lens or of ocean waves toward a
beach—or the gravitational attraction of light by a black
hole. For both the critical surface and the black hole
horizon this speed actually vanishes, causing the waves
to stall and never reach the surface in finite time. How-
ever, this paradox has a simple resolution in the case of
the fluid: The coherence length ξ diverges to infinity as
one approaches the horizon, and the laws of quantum hy-
drodynamics fail. The waves cease to have all meaning as
compressional sound and begin doing things disallowed
by hydrodynamics, such as decay and thermalize.

Let us now consider the possibility that this analogy
might be apt rather than just interesting. Pathologies in
the ultraviolet are one of the central problems of general
relativity. We presently have no way to resolve them,
and the difficulties are so severe that there is serious talk
about a need to change the laws of quantum mechanics23.
Moreover the existing experimental record says nothing
about this matter because it does not extend to the
Planck scale. It certainly does not preclude possibil-
ity that relativity might simply fail at the event horizon
through the divergence of a coherence length. Since dis-
tinguishing an emergent phenomenon from a fundamen-
tal one at long wavelengths is impossible, this amounts
to a serious logical flaw in the way we normally think
about relativity. It obligates us to take seriously the pos-
sibility that black hole horizons may be phase transitions
of the vacuum of space-time, that they are described in-
accurately by the Einstein field equations in the same
way that critical surfaces are inaccurately described by
quantum hydrodynamics, and that elevation of relativity
to a position of transcendence is the source of the entire
problem. Were this the case, it would instantly resolve
all incompatibilities between general relativity and quan-
tum mechanics, including the unitarity of the scattering
matrix and the loss-of-information paradox.

The analogy between the critical surface and the black
hole horizon may be made quite precise. In terms of the
critical density ρc = M(3b)−1/2 we have for the equation
of state near criticality

p

pc
− 1 = 12(

ρ

ρc
− 1)3 . (35)

Since the force of gravity is just a device for achieving a
density increase, we are allowed to weaken gravity at the
critical surface according to the rule

g = g0(1 − e−z2/ℓ2) , (36)

in order to improve the black hole analogy. We then have

p

pc
≃ 1 − g0

2ℓ2c20
z3 , (37)

where c0 =
√

pc/ρc is a velocity scale, and

c ≃ (
6c0g0
ℓ2

)1/3|z| =
|z|
τ

. (38)

This is precisely the rule with which the speed of light,
measured with a clock at infinity, vanishes at the event
horizon of a Schwarzschild black hole. Classical hydrody-
namics predicts that small density fluctuations δρ prop-
agate near the critical surface according as

∇ · [c2∇(δρ)] =
∂2(δρ)

∂t2
. (39)
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This is not significantly different from the scalar wave
equation

∇ · [c∇φ] =
1

c

∂2φ

∂t2
(40)

one obtains from

∂

∂xµ
(
√
−g gµν ∂φ

∂xν
) = 0 (41)

using the gravitational metric

ds2 = gµνdx
µdxν = dx2 + dy2 + dz2 − c2dt2 . (42)

Failure by means of a diverging coherence length is so
subtle that there is a precise sense in which the failure
does not occur at all. The issue is an order of limits.
Suppose we play a game in which you first declare how
close to the critical surface you wish to go, then I look
for a frequency at which hydrodynamics works all the
way down to this height. If we do things in this order
then I always win, since I can always pick the frequency
sufficiently low that ωξ/c << 1 on your surface. If we
do a proper experiment, on the other hand, in which you
first fix the frequency and then I search for the height at
which hydrodynamics fails, then I always lose. Thus if
black hole horizons were like critical surfaces then there
would be a precise sense in which general relativity was
exactly true in all regions of space-time accessible to us.
It would also be highly misleading. Our game shows in a
physical way that knowledge of the classical field theory
emerging in the q, ω → 0 limit is not sufficient for pre-
dicting all low-energy things near a phase boundary. We
must also understand the ultraviolet behavior. An im-
proper regularization—which is what this improper order
of limits amounts to—can lead to physical nonsense.

VIII. EXPERIMENTAL SIGNATURES

Let us now discuss some experimental properties of the
quantum fluid and its critical surface that might have
analogs in quantum gravity and thus lead to observa-
tional tests of these ideas on real black holes.

A. Hydrodynamic Failure at High Energies

The failure of hydrodynamics at the critical surface is a
specific case of a more general effect of ultraviolet break-
down. Since hydrodynamics is emergent it must fail in a
measurement of the “vacuum” far from the critical sur-
face, either through a deviation from relation ω = cq
or an otherwise disallowed decay, at some characteristic
scale ξ. The properties at this scale must evolve adia-
batically to lower energies as the critical surface is ap-
proached, and eventually evolve into the critical proper-
ties.

B. Transparency

Let us return now to Fig. 6 and consider what happens
to the acoustic energy beamed into the critical region.
Part of the answer is suggested by Fig. 5, which shows
that a sound quantum penetrating into the critical region
might morph adiabatically into a free boson, traverse the
region in finite time, and emerge intact from the other
side. To quantify this effect, however, we must evaluate
the rate at which a boson in the critical region decays.
This may be thought of either as an acoustic nonlinearity
or knocking extra bosons out of the condensate. At the
critical point the lagrangian is effectively

L = ψ∗(ih̄
∂

∂t
+µ)ψ− h̄2

2M
|∇ψ|2+3pcv

2
c (|ψ|2−ψ2

0)
4. (43)

The corresponding quantum hamiltonian is

H =
∑

q

h̄2q2

2M
a†
q
aq +

3pcv
2
c

L3

∑

q1q2q3q4

×δ(q1 + q2 + q3 + q4)(aq1
+ a†−q1

)(aq2
+ a†−q2

)

× (aq3
+ a†−q3

)(aq4
+ a†−q4

) . (44)

The extremely high order of the nonlinearity means that
the fastest decay process is emission of two extra bosons.
The contribution of this process to the imaginary part of
the boson self-energy is

ImΣq(ω) = 12(
3pcv

2
c

L3
)2

∑

q1q2

Im

[

h̄ω

− h̄2

2M
(|q1|2 + |q2|2 + |q1 + q2 + q|2) + iǫ

]−1

= −3
√

3

4π2
(
M

h̄2 )3(pcv
2
c )2(h̄ω− h̄2q2

6M
)2Θ(h̄ω− h̄2q2

6M
). (45)

Thus the decay rate for a boson of energy h̄ω = h̄2q2/2M
is

h̄

τrad
=

2√
3π2

(
M

h̄2 )3(pcv
2
c )2(h̄ω)2 . (46)

This implies that the free boson becomes more and more
sharply defined as its energy is lowered, so that in the
low-energy limit one retrieves the ideal noninteracting
bose gas24.

The condition for transparency is τ < τrad, where τ
is defined by Eq. (38). The reason is that the time it
takes the boson to traverse the critical region is always τ ,
regardless of its energy. The width of the critical region
grows with the boson’s momentum as h̄qτ/M , but the
velocity also grows as h̄q/M , and the two effects cancel.
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00.050.1 0 0.1 0.2 0.3 0.4d�||d
d!0 !0=!
FIG. 7: Differential cross-section for prompt fluorescence de-
fined by Eq. (47). The bosons are assumed to be normally
incident at frequency ω. The various curves are different val-
ues of θ ranging from 0 to π/2. The maximum value of ω′/ω
for radiation returned normally (θ = 0) is 1/9.

C. Critical Opalescence

If the critical surface is at temperature T then there
is a second decay process in which the boson scatters
off of another boson thermally excited into the vacuum.
This corresponds to conventional critical opalescence. It
is straightforward to calculate, but we shall just state
the result here. Up to factors of order 1, the rate as the
same as in Eq. (46) except for the substitution (h̄ω)2 →
(kBT )3/2(h̄ω)1/2. Thus for frequenceis much larger than
kBT/h̄ this process is irrelevant.

This has the interesting and important implication
that the ratio τrad/τ determines whether the critical sur-
face is optically thin or thick. When this parameter is
much less than 1 the surface is very thin, and therefore
not “black”.

D. Prompt Fluorescence

There is a net probability of about 0.06 that one of
the bosons created in a decay will escape back out of
the surface. This fluorescence signal is prompt and has a
characteristic spectral shape. Let us assume for simplic-
ity that τrad < τ , so that all the quanta impinging on the
surface decay. In the opposite case one just reduces the
signal by the decay fraction. Let us also assume that the
bosons are normally incident at frequency ω. Then the
differential cross-section per unit area A of the surface to
scatter back into solid angle dΩ and between frequency
ω′ and ω′ + dω′ is

dσ

dΩdω′ =
27A

16π2ω

√

3x[1 − 3x− 2
√
x cos(θ)] , (47)

where x = ω′/ω and θ is the polar angle of exit just above
the critical region, i.e. before the signal is defocused by
outward refraction. This result is plotted in Fig. 7.

00.51 0 0.5 1jRj2 !�
0123 0 0.5 1!n� (�h�=2M)1=2q 0.5110�5 100(�h�=2M)1=2q

FIG. 8: Bottom: Resonant frequencies ωn obtained by solving
Eq (48 ) for various values of momentum q in the interfacial
plane. Top: Reflectivity as a function of frequency showing
structure at ωn. The precise shape of this curve depends on
how far above the surface the law c = |z|/τ remains valid.
The dotted curve is a plot of Eq. (50).

E. Reflection Resonances

When τrad >> τ the bosons with parallel momentum
q form bound states in the plane of the critical surface.
This result is obtained by solving the wave equation

h̄2 ∂
2ψ

∂t2
= (

h̄

τ
)2∇ · (z2∇ψ) − (

h̄2

2M
)2∇4ψ (48)

assuming frequency ω and momentum h̄q in the plane.
The resulting eigenfrequencies ωn are shown in Fig. 8 as
a function of q. When q >> (2M/h̄τ)1/2 the frequencies
have the simple harmonic oscillator form

h̄ωn ≃ h̄2q2

2M
+ (n+

1

2
)
√

2
h̄

τ
. (49)

This limit is difficult to achieve, for this is the condition
implicit in Eq. (46) for τrad < τ . When q is very small, on
the other hand, the resonances converge together slowly
and, at q → 0, collapse to a continuum characterized by
the reflectivity

|R|2 =

[

1 ωτ < 1/2

cosh−2(π
√

(ωτ)2 − 1/4 ωτ > 1/2

]

(50)

This is plotted in Fig. 8. Also plotted is a sketch of
the kind of reflection signal that this effect would tend
to generate - a transmission resonance at every “bound”
state. More than a sketch is unfortunately not possible
because the details of the spectrum depend on how far
above the surface the relation c = |z|/τ remains valid.
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Critical Surface�����
FIG. 9: Proposed solution for interior of black hole described
by Eqs. (52) and (54). Note that the speed of light, measured
by clocks at infinity, rises linearly on either side of the horizon,
just as the sound speed does in Fig. 6.

F. Heat Capacity

The heat capacity of the critical surface is finite. As-
suming Eq. (22) with c = |z|/τ , we have for the thermal
energy per unit area

E

L2
=

1

2π2

∫ ∞

−∞
dz

∫ ∞

0

q2dq
h̄ωq

exp(βh̄ωq) − 1

=
ζ(3)

π
(
kBT

h̄
)3Mτ , (51)

where ζ(3) = 1.202....

IX. DE SITTER INTERIOR

In order to talk experimentally about real black holes
it is now necessary for me to speculate about what is
inside them. This is extremely dangerous since, as we
have discussed, it is fundamentally impossible to infer the
nature of one phase from low-energy measurements made
on another. However, in order to stimulate thinking on
what kinds of measurement one could profitably do on
the black hole itself it is necessary to be concrete, and this
requires that we specify what happens when one crosses
the horizon.

I shall presume that that the analogy with Fig. 6 is
literally correct. Catastrophic jumps of the metric char-
acteristic of a first-order transition cannot be ruled out
on any logical basis, nor can a non-relativistic equation of
state inside the black hole. However, a continuous transi-
tion does the least violence to classical general relativity
and allows the Einstein field equations to be valid, in
the limited sense we have described, everywhere experi-
mentally accessible to us. If the analogy is apt then the
relevant emergent principle - in this case relativity - must
be restored on the other side of the surface in a mirror-
symmetric way. This means that the metric must exist
on the other side, satisfy the Einstein field equations, and
be characterized by a speed of light, measured by clocks
at infinity, that increases with distance from the horizon,
just as the sound speed does on the other side of the

critical surface. As shown in Fig. 9, this does not leave
one much flexibility. The boundary conditions at r = 0
require the black hole to contain positive energy density
but negative pressure. This is the characteristic feature
of de Sitter space. Indeed for the the specific metric

ds2 = γ(r)dr2 + r2dΩ2 − c2γ(r)dt2 , (52)

the choice of cosmological-constant matter

Rµν − 1

2
gµνR =

[

3r−2
s gµν r < rs
0 r > rs

]

, (53)

where rs = 2GM/c2, with M the black hole mass, works
nicely, and we obtain

γ(r) =

[

1 − (r/rs)
2 r < rs

1 − rs/r r > rs

]

(54)

This leads to the interesting idea that the two phases
might be distinguished by the values of their cosmological
constants.

An important experimental consequence of this solu-
tion is that there would be a local measurement capable of
detecting proximity to a black hole. Black hole horizons
cannot be phase transitions unless the relativity principle
itself is emergent. Einstein gravity is based on very little
other than the principles of relativity and equivalence,
so if both of these are true then the predictions of clas-
sical general relativity must also be true—notably that
black holes must form in the conventional way and not be
analogous to the critical surface. Thus relativity would
have to fail at sufficiently high energy scales whether one
were near the black hole or not. The energy scale of this
failure—the ultraviolet cutoff of the theory—would be
both measurable and position-dependent. Its lowering to
zero would signal proximity to the event horizon.

A reasonable guess for the scale at which the princi-
ples of emergence should fail is the Planck length ξp =

(h̄G/c3)1/2 = 1.61 × 10−33 cm. However, here one must
be cautious. The superfluid analog of Newton’s constant
is the inverse mass density ρ−1. This is determined by
adding the term

δL = V2a
3

[

|ψ(r)|2 + |ψ(−r)|2
]

(55)

to the lagrangian of Eq. (11), and then inducing acoustic
radiation by moving the parameter r(t) in a circular orbit
of radius ℓ/2 at frequency ω. After some algebra one finds
the power radiated to be

P =
1

5πρc5
M2ℓ4ω8 , (56)
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where M is the mass accumulated around r by the po-
tential. The corresponding quantity in Einstein gravity
is

P =
2

15

G

c5
M2ℓ4ω6 . (57)

The disparity in the powers of ω comes from the fact
that hydrodynamics is a monopolar theory while grav-
ity is quadrupolar. Combining the mass density and
the sound speed dimensionally into a length, one obtains
(Mc/h̄v)1/4 = η1/4ξ, where η = ξ3/v. Unfortunately
the dimensionless constant η cannot be measured in any
q, ω → 0 experiment. If η ≃ 1, as is the case in super-
fluid 4He, then dimensional analysis gives a reasonable
estimate of ξ. Otherwise it does not.

This model suggests that cosmological black holes may
be optically thin, and thus not “black” at all. For a
solar-mass black hole (M = 2 × 1033 gm) we have [cf.
Eq. (38)] rs = 3.0 km and τ = 2rs/c = 2.0 × 10−5 sec.
To estimate τrad let us assume that the vacuum far from
the black hole is analogous to the quiescent fluid, and
that η = 1 there, so that the coherence length ξ can be
determined by dimensional analysis and thus equals the
Planck length. Let us further assume that the equivalent
fluid density and pressure are not far from their values at
the critical point, so that pcvc is Planck energy Mpc

2 =
h̄c/ξ and M is the Planck mass Mp. Then we have

τrad =

√
3π2c

ξpω2
=

3.2 × 1044 sec−1

ω2
, (58)

where ω is the frequency far away from the black hole.
Thus the horizon would be transparent to gravitons
(and presumably any other particle) of energy less than
h̄ωmax = 2.6× 109 eV. Were this the case, the black hole
would look like a powerful defocusing lens.

The most important difference between the model of
Fig. 9 and a traditional black hole is its finite specific
heat. From Eq. (51) we find that the total thermal en-
ergy contained at the horizon of a black hole at temper-
ature T , measured at infinity, is

E = 8ζ(3)(
rs kBT

h̄
)3
M

c
. (59)

It is absolutely clear that the cold quantum critical sur-
face does not radiate, since it is in its ground state, and
it is also clear that the surface may be raised to arbitrary
temperatures by adding heat. Thus this analogy is funda-
mentally at odds with Hawking’s prediction that a black
hole should emit thermal radiation with a temperature
proportional to its mass25. Unruh26 showed a number of
years ago that traditional Hawking radiation is emitted
from caustic surfaces of transsonic superfluid flows, and
Jacobson and Volovik27 have recently made a good case
that this also occurs at “superluminal” solitonic domain

walls of superfluids. The long-wavelength description of
these systems is identical to that of the critical surface
discussed here, but the ultraviolet description is differ-
ent. Since Hawking’s regularization procedure has no
microscopic justification there is reason for concern that
his result may be an artifact of fictitious motion encoded
in the cutoff procedure. The heat capacity implicit in
Eq. (59) is large. The temperature at which this energy
equals Mc2 for a solar-mass black hole is kBT = 141 eV.

The event horizon in this model contains a large zero-
temperature stress, or negative surface tension, like that
in a steel pressure vessel, holding back the negative pres-
sure of the cosmological-constant matter on the inside.
This, however, is arguably a symptom of the breakdown
of relativity and not physically meaningful stress. It is
not detectable in any measurement performed on the out-
side other than the the fluorescence and reflection struc-
ture shown in Figs. 7 and 8, nor does it exist in any region
of space-time where Einstein gravity is valid (on length
scales longer than ξ). It resides only on an infinitely thin
surface at which ξ has diverged to infinity and neither the
metric nor the curvature tensor is defined on any scale. If
one insists on thinking of this stress conventionally then
it is large. For any choice of γ(r), conservation of momen-
tum requires the radial pressure jump across the surface
to satisfy

∆T r
r =

1

r0

∫ r0+ǫ

r0−ǫ

(T θ
θ + T φ

φ − 2T r
r )dr

=
1

2r20

∫

√
r0ǫ

−√
r0ǫ

(T θ
θ + T φ

φ − 2T z
z )|z|dz =

3

4π

M
r3s

. (60)

The thermal contributions to the pressure integral be-
come comparable to this only when the total thermal
energy approaches Mc2. Denoting the these by δT µ

µ we
have

1

2r20

∫

(δT θ
θ + δT φ

φ )|z|dz =
ζ(3)

π
M(

kBT

h̄c
)3 , (61)

following Eq. (51).

X. CONCLUSION

My lecture today has been intentionally iconoclastic,
and I hope you will all take it in the spirit of fun and as
a starting point for reflection about the gravity problem
in new ways. It has been my experience that good theo-
retical physics is empowering, in that it enables thinking
to take place that would otherwise not occur, and, in its
highest form, facilitates experiments that would other-
wise not be done. This is a difficult and often dangerous
task, as we are paid to be technicians, not visionaries,
and can be just as severely punished for political incor-
rectness as a governor or congressman. However, this
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activity is the most important thing we do, and perhaps
even the only important thing we do, for experimental-
ists are usually smart enough to model for themselves but
cannot take expensive risks without help. For those of
you younger than I am and feeling a bit unsure about how
this all works, let me assure you of one of the great truths
of our discipline: Experimentalists are amazing and won-
derful people. They have clever tricks you or I could
never guess and are always on the prowl for something
to earn them glory. Communicating important ideas to
them in a clear and courageous way is the best way I
know both to earn one’s keep and to generate science
that lasts.
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